四虎国产成人免费观看-四虎国产-四虎官网-四虎官方影库-四虎高清在线精品免费观看-四虎高清成人永久免费影院

Welcome to Shanghai Qiao Feng industrial co., LTD's website
Position
Home > News > Industry news
Detailed knowledge of the structure of spray dryer
2019/2/20 14:44:18


(Structure chart of spray dryer)

  For different needs, spray dryer also has many classification methods, such as gas and liquid flow, divided into parallel flow (downstream), countercurrent and mixed flow. According to the installation of atomizer, there are upper and lower spray type and lower spray type; according to the system, there are open type, part circulation type and closed type. As we all know, there are many kinds of fog separator for spray drying, but according to their atomization basis, atomizer is divided into three types: centrifugal, pressure and airflow. Traditionally, spray dryer is classified according to atomization mode, that is, according to the structure of atomizer. Spray drying is divided into three types: rotary type (centrifugal type), pressure type (mechanical type) and airflow type. It has been nearly twenty years since the spray dryer was used in large quantities. The early industrialization of Zui in China should be airflow spray dryer. However, with the successful development of centrifugal and pressure spray dryer, the shortcoming of energy consumption of airflow spray dryer is obvious (nebulizer consumption of energy is 4~8 times of the other two). In recent years, Zui has been gradually replaced by two other models in large-scale industrial production, but it is still in use due to the special needs of the pharmaceutical industry. The high speed nebulizer of centrifugal spray dryer is the key equipment. The problem of amplification has high technical requirements. At present, our country not only has the capability of producing centrifugal atomizer of airflow, machinery and electromechanical integration, but also can achieve the hourly capacity of 45t water. There are professional atomizer factories in Hangzhou, Xining, Wuxi and Jingjiang. At present, the centrifugal spray dryer has formed a serialized model from hourly capacity to several tens of tons per hour. Production and manufacturing technology is basically mature. The product of pressure spray dryer is particulate, and has been widely applied in synthetic detergent, dyestuff, water treatment agent and so on. At present, the pressure sprayer dryer designed and manufactured by our country can reach 8m in diameter, up to 50 meters, and evaporation capacity is up to several tons of water per hour.


At present, in many drying equipment, spray dryer is one of the drier with higher output value, each set from several hundred thousand to several million. In Wenzhou, Shanghai, Wuxi, Jiangyin, Xining and other places, there are many professional manufacturers of spray dryer, providing hundreds of sets of spray drying equipment to customers every year. From the research point of view, the research content of spray drying technology is the first in every academic conference of the national dry meeting. The theoretical imperfections and wide application have attracted the attention of a large number of researchers.

  The centrifugal atomizer developed by Niro Company in Denmark is famous for its high precision, high speed and energy saving. It can not only achieve uniform and controllable particle size atomization, but also has a large single processing capacity of 200 t/h. This provides a powerful atomization for the development of large spray dryer. Anhydro's centrifugal atomizer uses belt drive and improves the lubrication system, and achieves good results. These achievements are one of the important reasons for the rapid growth of centrifugal atomization applications. China has developed dozens of tons of evaporation per hour, which still lags far behind the level of foreign countries.

  Spray dryer is a drying equipment for treating solution, suspension or slurry material. It uses spray method to make the material become droplet dispersed in hot air, and the material is in contact with the hot air in the way of parallel flow, countercurrent or mixed flow, so that the moisture evaporates quickly and achieves the purpose of drying. With this drying method, unit operations such as concentration, filtration and crushing can be omitted, and granular products of 30-500 um can be obtained. And the drying time is very short, the general drying time is 5 ~ 30 s. It is suitable for the drying of highly thermal sensitive materials and dispersible materials in the process of concentration of material and liquid. The product has good fluidity and instant solubility.

  In the spray dryer, the gas solid two phase contact area is large, but the gas solid two phase is dilute phase flow. Therefore, the volume heat transfer coefficient is small, generally 20~100kcal/m3? H? C, the inlet temperature of hot air is 260~500 260~500 at the co current operation, and the operating temperature is about 200~300 C. Industrial scale spray dryer, the thermal efficiency is generally 30~50%. Foreign spray drying with waste heat recovery, thermal efficiency can reach 70%, but this device is only greater than 100kg (water) /h production capacity is of economic significance.

  The basic process of spray drying is as follows: the slurry is dispersed through a nebulizer and droplets are dispersed in the hot gas stream. The air is heated by air blower into the air heater, then enters the spray dryer and DRIs and DRIs with the droplet. Part of the product falls to the bottom of the tower. Part of the product is inhaled by a first-stage induced draft fan into a first-stage cyclone separator. After separation, the exhaust gas is exhausted. The products at the bottom of the tower and those collected by the cyclone separator are extracted by the secondary exhaust fan and packed after the separation by the secondary cyclone separator.

  Spray drying products are fine particles. In order to meet the requirements of environmental protection, it is not enough to spray the drying system to separate products and purify the exhaust gas only by cyclone separator. If the dust content in the tail gas is less than 50 mg/Nm3 or wet scrubber is used, the dust content in the tail gas can be reduced to 15-35 mg/Nm3.

(two) progress in spray drying technology

  Spray drying is widely used in chemical industry, light industry, food industry and so on because it can be directly obtained from solution or suspension system with homogeneous powder products. In chemical industry, Zui is widely used in dyestuff industry. After years of efforts of engineers and technicians, spray drying technology has been relatively mature, and the determination of tower size also has a successful calculation method. The nebulizer used is still three kinds of pressure, centrifugal and airflow, but in recent years the application of centrifugal spray dryer is on the rise. For real solution spray drying, it is worth noting that the temperature of the drying medium required by different hydrophilic solutes is different. For inorganic salts with strong hydrophilicity, evaporation and dehydration of aqueous solution are mainly carried out at the boiling point of the solution, and it is difficult to operate the outlet gas temperature below 130 C. Although there is a clear gap between China and foreign countries, the manufacturing and operation level of spray drying equipment has also been greatly improved. In recent 20 years, the improvement and innovation of spray drying technology and equipment are mainly in the following aspects:

(1) Solving the problem of wall sticking

  Sticking phenomenon is still a prominent problem that hinders the normal operation of spray dryer. Generally speaking, increasing the diameter can reduce the wall sticking, but it is obviously not economical to use very large equipment diameter for this purpose. Foreign experts have studied the problem of sticking and caking in drying process. They think that the main macro factor causing sticking is wall temperature. The solution to orange juice spray drying is to cool the tower wall below the temperature of the dry product and add a drying aid in the feed liquid. Masters proposed three possible ways to prevent wall sticking:

  Firstly, a clipped drying tower is adopted, in which air is used to cool the wall temperature to keep below 50 C. Flat bottom tower is suitable for materials with strong cohesion.

  (2) The secondary air cooling tower wall is introduced tangentially through the swirling section of the tower wall;

  (3) Install an air broom consisting of a row of nozzles near the wall of the tower and make it rotate slowly along the wall.

  Obviously, the basic effect of these measures is the same, that is, cooling tower wall. These methods have been applied in the drying of Chinese herbal extracts and have certain effects. In addition, the polishing of the inner wall of the tower can also reduce the stickiness of the wall.

(2) Improving the physical properties of products

  With the development of science and technology and the improvement of living standards, the physical properties of spray drying products are increasingly demanding. For example, some require bulk density to be very high (> 1.0) or very small (< 0.6), while some rehydrated powders such as food and Chinese medicine granules often require instant solubility. Generally speaking, products with different bulk densities can be produced by changing atomization dispersion and operating conditions to control drying rate, but the range of change is limited. In improving physical properties, it is worth mentioning that foam spray drying is about to first feed liquid before foaming, then spray drying. The method Zui was first proposed to improve thermal efficiency, and later used to adjust the physical properties of products. It has been proved that the products such as milk powder produced by foam spray drying are large, porous, porous and rough, and have good instant solubility. Since the 1980s, this technology has been used in industrial production.

(3) Development of multi-objective processes

  The combination of spray drying and other unit processes has been successfully developed and applied in two main categories. One is spray drying reaction process. One of the typical examples is the spray drying polymerization one step process to prepare sodium tripolyphosphate. But from the point of view of energy consumption, it is not a successful example. The energy consumption per unit product is higher than that of two-step method. It seems that to achieve this combination economically, one of the necessary conditions is that the material temperature required for drying and reaction is basically the same or similar. Another type of multi-target process that has been developed and applied more successfully is spray granulation drying, that is, spray or coating suspension of liquid or suspension on fine-grained material and granulating. Particle drying is usually carried out in fluidized beds (some use drums). Solution atomizers can be placed inside or above the granular bed according to the particle size requirements. Spray granulation drying technology has been used and applied earlier, and much basic research has been done. As there are many products, such as fertilizers, dyes and so on, making granules is more conducive to storage, transportation and use, and interest in these technologies has been growing over the years. According to the available technology, the design and operation of the device with the diameter of bed less than 1 m are easy to solve, but for the large device, it seems that the problem of enlargement needs further study.

(4) Development of combined drying equipment

  It can be directly dried from liquid to powder, which is the Zui advantage of spray drying. However, spray drying is also a major drawback of Zui because of its low thermal efficiency, large volume, low production capacity and high investment. In recent years, Chinese and foreign drying experts have done a lot of research on multistage combined drying with spray drying. It dries the liquid into solid and then enters the next dryer for further drying. In this way, the shortcomings of spray dryer are overcome, and the situation in this area will be introduced in the following contents.

(three) brief introduction of three spray drying devices

1. airflow spray dryer

  Because the power (compressed air) consumption of the airflow atomizer is larger than that of the pressure atomizer and the rotary atomizer, it is generally used for drying small batches of products. Air-flow nozzle can easily produce very fine or large droplets. Compressed air or superheated steam with pressure of 0.2-0.5 Mpa is used in the atomizer to spray liquid into droplets through the nozzle. It is an ideal drying equipment for laboratories or intermediate factories. For the atomization of non-Newtonian liquid, the airflow mode is superior to other types. Three-fluid atomizer is very effective for atomizing paste or filter cake with high viscosity.

  Spray drying in China begins with airflow, and has accumulated rich experience in the design, manufacture and operation of airflow nozzles.

2. Pressure fog dryer

  Due to the increasing demand for granular products such as instant milk powder, hollow particle dye, spherical catalyst, white carbon black and granular ferrite, the pressure spray drying device has also developed. Our country has designed and manufactured several kinds of pressure spray drying equipment of various specifications, and now we have mastered the design, manufacture and operation technology of this type. Pressure atomization is a high-pressure pump to pressurize the material to 2-20 Mpa, and then send it into the atomizer to spray the material into a spray. The amount of spray can reach several tons to ten tons per hour, which can meet the needs of various industries. In industrial production, several or even a dozen nozzles can be installed in a tower, which can keep in full conformity with the experimental conditions, and there is basically no enlargement problem.

3. centrifugal spray dryer

  The centrifugal spray dryer relies on the centrifugal force generated by the high-speed rotation of the atomizing disk. The centrifugal atomizer has a rotary speed of 4000~20000r/min and Zui up to 50000r/min. The sprayer of the nebulizer is short and thick (L/D=1.5~2, L is Takeo and D is the tower diameter). The circumferential speed of the rotating disk is the main parameter of atomizing quality, and the circumferential speed of the design is 90~160m/s.

  In order to resist abrasion, the atomizing disk is lined with wear-resistant materials, such as ceramics and cemented carbide, in addition to directly forming circular holes and rectangular channels. For industrial spray drying with large spray volume (from several tons to 100 tons per hour), such as flue gas desulfurization of thermal power plants, rotary atomizer can be used, usually with only one nebulizer.

(four) spray drying industrial products

1. Polymers and Resin Products

  Acrylonitrile butadiene resin, acrylonitrile butadiene styrene resin, melamine formaldehyde resin, polyformaldehyde, phenol formaldehyde resin, polyacrylic acid ester, polyacrylonitrile, polycarbonate, polyethylene, polyaldehyde, polypropylene, polystyrene, polyvinyl acetal, polyvinyl alcohol butyrate, polyvinyl acetal, polyvinyl chloride emulsion, polyvinyl chloride suspension Floating colloid, impregnated cellulose, styrene acrylonitrile resin, styrene butadiene resin, urea formaldehyde resin, polyvinyl chloride acetate, polyvinyl alcohol.

2. Drying of Catalysts

  Such as acrylonitrile catalyst, light oil conversion catalyst, medium temperature shift catalyst, high pressure methanol catalyst and low pressure methanol catalyst.

3. Dyes, pigments and pigments

  Basic dyes, cadmium sulfide, ceramic color, chrome yellow, copper oxide, fast dyes, food color, indigo dyes, iron oxide, kaolin, zinc barium white, milolian, organic pigments, paints, phthalocyanine, titanium dioxide, watercolor, zinc chromite, potassium zinc chromite, zinc tetroxide chromite, reactive turquoise blue, carbide green B, whitening agent.

4. Ceramics, Glass and Porcelain

  Alumina, bentonite, beryllium oxide, calcium carbide, silicon carbide, cement, electric porcelain, enamel, ferrite, floor tile material, glass sand, grinding wheel material, insulating material, iron oxide, kaolin, sand, silicon oxide, spark plug material, saponite, titanate, tungsten carbide, uranium oxide, wall tile material, zinc oxide, zirconium silicide.

5. Carbohydrate-like products

  Corn wine, glucose, gum arabic, lactose, fructose, sorbitol, starch, sugar, wheat flour.

6. Atractylodes, fungicides and insecticides

  Calcium arsenate, cupric chloride, cuprous oxide, 2,4-dichloro-phenoxyacetic acid, 2,4-dichloro-phenoxypropionic acid monomethylamine salt, dichloro-phenoxypropionic acid, dichloro-sodium propionate, lead arsenate, methyl-chloro-phenoxyacetic acid, methyl-chloro-phenoxyacetate, methyl-chloro-phenoxypropionic acid, sodium-aluminium-fluoride, sodium-methyl-arsenate, sodium-pentachlorophenol aldehyde, Thiophenol Chemical colloid, zinc-diethyl-dithiocarbamate, zinc-dimethyl-dithiocarbamate, herbicides, insecticides, fungicides.

7. Dairy products and eggs

  Baby food, yogurt, casein, caseinate, cheese, sugar coconut juice, fresh cream, eggs: egg white, yolk, whole egg, ice cream mixture, milk substitutes, mixed dairy products, skim milk, whey, whey mother liquor, whole milk.

8. Food and food extracts

  Artichoke, cake mixture, chrysanthemum tea, coconut mixture, coffee essence, substitute coffee essence, decaffeinated coffee essence, fat-containing flour mixture, condiment, blended juice, garlic, rose juice, liquorice extract, wheat essence, milk coffee mixture, Spanish toothed capsicum, vegetable protein, hydrolyzed protein, crude chymosin, soup mixture, tea essence, tomato, fungus Silk vitamin B12, nicotinic acid, protease, hydrolyzed protein, sorbitol, valerian, soluble fish meal, fish milk, fish protein.

9. Pharmaceuticals and Biochemicals

  Aluminum hydroxide, sucrose sulfate, streptomycin sulfate, vitamin A, vitamin E, xanthothiazole, tetracycline, ampicillin, rutin derivatives, amoxicillin, oxytetracycline, penicillin, ampicillin, amylase, aspirin, serum, calcium lactate, calcium pantothenate, succinylchloramphenicol, dextran, fluoroo-chloropenicillin, Rhamnus peel, hormonal, dextran Ferric glucan, iron glucan, liquorice, heparin, L-lysine, magnesium hydroxide, vitamins, antibiotics, enzymes, dextrins, heparin, medium and extracts of Chinese herbal medicines.

10. By-products, blood and fish products from slaughterhouses

  Animal Protein, Animal Blood, Dark Albumin, Light Albumin, Brain, Fish Albumin, Fish Meal, Fish Milk, Fish Sauce, Gum and Hydrolyzed Gum, Liver, Whale Dew

11. Detergents and Surfactants

  Alkyl-imitated aluminates, detergents, dispersants, emulsifiers, fatty ethanol sulfate, heavy detergents, light detergents, potassium orthophosphate and potassium orthophosphate, calcium orthophosphate and dicalcium orthophosphate, nitrile triacetate, optical instrument brightener, phosphate ester, saponin, soap, tetrapotassium polyphosphate, synthetic laundry powder, sodium dodecanol sulfate and saponin.

12. Organic Compounds

  Adipic acid, aluminium formate, aluminium hard ester, aminophenol disulfonate, aspirin, bismuth compound, calcium acetate, calcium butyrate, calcium gluconate, calcium lactate, calcium propionate, calcium gluconate, calcium stearate, cellulose acetate, CMC, methylmorphine phosphate, edetate, magnesium complex, glutamic acid, glycerin, glyoxal, lactose, lysine, malic acid, mercaptophiazole Suspension, metal stearate, oxalic acid, p-aminosalicylic acid, potassium phthalate, potassium sorbate, rubber catalyst, salicylic acid, sodium acetate, sodium benzoate, sodium dimethyldithiocarbamate, sodium ethyl xanthate, sodium carbonate, sorbite sodium, stearic acid, wax, zinc stearate.

13. Inorganic Compounds

  Aluminum chloride, alumina, aluminium phosphate, aluminium silicate, aluminium sulfate, ammonium chloride, ammonium molybdate, ammonium nitrate, ammonium phosphate, ammonium sulfate, ANC catalyst, antimony sulfide, arsenic oxide, barium chloride, barium sulfate, bauxite waste liquid, bismuth carbonate, borax, boric acid, calcium carbonate, calcium chloride, calcium hydroxide, calcium phosphate, calcium propionate, calcium silicate, calcium sulfate, calcium sulfate, etc. Catalyst, cement (raw material), chromium dioxide, chromium sulfate, cobalt sulfide, copper oxychloride, copper sulfate, copper sulfide, cryolite, copper oxide, mortar flotation ore, graphite, iron oxide, kaolin, lithium chloride, zinc barium white, aluminum magnesium silicate, magnesium hydroxide, manganese carbonate, manganese oxide, molybdenum disulfide, nickel carbonate, nickel hydroxide, nickel sulfide, potassium bicarbonate, chloride, chlorine Potassium acid, magnesium peroxide, potassium nitrate, potassium permanganate, potassium persulfate, potassium phosphate, silica gel, sodium antimony, sodium bicarbonate, sodium dichromate, sodium chlorate, sodium chromate, sodium cyanide, sodium bisulfate, sodium hypochlorite, sodium phosphate, sodium silicate, sodium aluminosilicate, sodium fluosilicate, sodium sulfate, sodium trisulfate, thorium carbonate, titanium tetrachloride, uranium dichloride, zinc carbonate, sulphur Zinc acid.

14. Mineral drying

  Such as copper concentrate, nickel concentrate, platinum concentrate, oxidized concentrate, aluminium concentrate, zinc concentrate, tin concentrate, precipitated copper, precipitated aluminium hydroxide, precipitated nickel carbonate, precious metal mud, bentonite, cryolite, kaolin and phosphate, etc.

15. cellulose

  Mechanical pulping, other pulps, secondary fibers, semichemical and mechanochemical pulps, sulphates, sulphite waste liquor

16. By-products and other materials

  Asphalt rubber, bentonite, coal, cork, diatomite, dregs, pressed coffee beans, yeast raw materials, corn gluten, plastic powder, pectin waste, seawater, sewage, sewage sediments, wheat gluten, wood flour.

Two. Centrifugal spray dryer.

  Centrifugal spray dryer is equipped with centrifugal atomizer, hence its name. Centrifugal spray dryer is one of the most widely used Zui driers in industrial production. The liquid is centrifuged and thrown into droplets and dried in the dryer by adding liquid to the high speed rotating disks. On the surface of the disc, the liquid diffuses in a thin film shape and is thrown out at a high speed at the circumference. The atomization effect depends on the circumferential linear velocity and feeding rate, as well as some physical characteristics of the liquid.

  The characteristics of the centrifugal spray dryer are basically determined by the characteristics of the atomizer.

  (1) centrifugal spray drying does not require strict filtration equipment. If there is no fibrous liquid in the material, the material and liquid passages will not be blocked.

  2. It can be used for high viscosity liquid (compared with pressure spray drying).

  (3) Because the speed of the atomizer is easy to adjust, it is easier to air the product size and narrow particle size distribution.

  (4) The same product can be obtained with the change of feed rate (+25%) without changing the working state of the atomizer when adjusting the throughput.

  _Because the fog group produced by centrifugal atomizer is basically on the same horizontal plane, and the fog droplets move along the radial and tangential direction of synthesis, there is almost no axial initial velocity, so the diameter of the dryer is relatively large. The diameter and length of the drying chamber are relatively small, and the space of the drying chamber can be utilized to a great extent by Zui.

The centrifugal spray dryer has the following disadvantages:

  (1) The contact mode between droplets and gases basically belongs to the form of parallel flow, and the dispersing disc can not be placed vertically.

  (2) The processing accuracy of the dispersing disc is required to be high, and good dynamic balance performance is required. If the balance state is not good, the spindle and bearing are easy to be damaged.

  3. The product stack density pressure spray drying is lower.

(1) Atomization mechanism of centrifugal atomizer

  When a liquid is injected into a high-speed rotating dispersing disk, the liquid is accelerated to split and atomize under the action of centrifugal force and gravity. At the same time, at the interface between the liquid and the surrounding air, the existence of friction also promotes the formation of droplets. For this reason, the former is called centrifugal atomization, and centrifugal force plays a major role. The latter is called velocity atomization, and the centrifugal force only accelerates the liquid. The two kinds of atomization are introduced separately consciously in the study of atomization theory. In practice, it is difficult to distinguish the two kinds of atomization phenomena at the same time. When the feed rate is small and the rotating speed is low, the product size distribution produced by centrifugal atomization is narrower than that of pressure and airflow.

  Generally, the formation of droplets on the surface of a rotating dispersing disk depends on many conditions, such as the viscosity of the liquid, surface tension, inertia of the liquid on the dispersing disk, and the friction between the liquid and the air interface when it is released. The properties of liquid, especially the viscosity and surface tension, are the main factors of the dispersing disc at low rotating speed. In industrial production, the rotational speed of atomizer is often higher, and the inertia and friction are the main factors to form droplets. When the viscosity and surface tension of the feed are dominant, droplets will form separately and release from the edge of the dispersion disk to form uniform droplet clusters. Because of the strong internal force produced by the viscosity of the feed liquid, which prevents the liquid from breaking at the edge of the dispersing disc, it requires a large amount of energy to obtain a higher dispersion. Higher surface tension produces larger particles, which are produced in the thick liquid film at the edge of the dispersion disk. Lower surface tension lengthens the liquid wire and produces smaller droplets when it breaks. For high viscosity and high surface tension materials, spherical particles are usually produced, and droplet diameter can be easily controlled by changing operating conditions. The fog group produced by centrifugal nebulizer is basically on the same horizontal plane, unlike the other two nebulizers, which eject liquid at a certain angle.

  Centrifugal atomization can be basically summarized as three cases: material-liquid splitting into droplets directly, filamentous splitting into droplets and membrane splitting into droplets.

1. Directly splitting material into droplets

  When the feed quantity is small, the feed liquid is moved to the edge of the dispersing disc by centrifugal force, and the hemispherical liquid ring rises around the dispersing disc. The shape depends on the viscosity, surface tension, centrifugal force and the shape and smoothness of the dispersing disc. When the centrifugal force is greater than the surface tension, the spherical droplets on the edge of the dispersing disc are thrown out immediately and atomized, accompanied by a small number of large droplets.

2. Filamentous splitting into droplets

  The hemispherical liquid is drawn into many filamentous liquid lines when the flow rate of liquid is large and the rotating speed is accelerated. With the increase of flow rate, the number of liquid filaments around the dispersing disc is also increasing. If a certain amount is reached, the liquid filament will become thicker, and the number of liquid filaments will not increase, and the liquid filament thrown out is not stable. The fluctuation and inhomogeneity of the motion of the liquid filament breaks near the edge of the dispersing disc and shrinks into spherical shape under the action of surface tension.

3. Membranous splitting into droplets

  When the flow rate of liquid continues to increase, the number of liquid filaments and the diameter of the filaments no longer increase, and the filaments adhere to each other to form thin films. When the liquid film is thrown out by centrifugal force at a certain distance around the dispersing disc, the liquid droplets are divided into dispersed droplets. If the rotating speed is further increased, the liquid film will shrink to the periphery of the dispersing disc and the liquid film band will narrow. If the sliding energy of the liquid on the surface of the dispersion plate is reduced to Zui small, the liquid can be ejected at high speed, and the atomization is split by friction with air around the dispersion plate.

  From the above analysis, it can be seen that the three atomization mechanisms may occur at different operation stages or at the same time, but there is always one main form of atomization. Which kind of atomization is the main factor is related to the shape, diameter, rotational speed, feed volume, surface tension and viscosity of the dispersing disc.

(2) Structure of atomizer

1. pneumatic type

  The main pneumatic driving mode is to install a turbine wheel on the spindle. The compressed air drives the turbine wheel to drive the spindle to rotate, so as to drive the atomization dispersion disk to rotate at high speed. The characteristics of this nebulizer are stepless speed change by adjusting the pressure and volume of compressed air, and there is almost no mechanical wear problem. The atomizer has simple structure and does not need to be repaired. The pressure of compressed air is between 0.2 and 1.0 MPa. It is mainly suitable for small experimental devices.

2. Electromechanical Integration

  The electromechanical atomizer uses a high-speed motor to drive the dispersing disk directly, which eliminates the complicated mechanical transmission structure and reduces the mechanical wear. Moreover, the input power adjusts itself with the change of processing capacity. Therefore, the energy consumption of the atomizer is 50%-60% of the mechanical transmission, and 30% less than that of the pneumatic atomizer. The structure is to install the coil of the motor in the shell of the atomizer, and the dispersing disc is installed on the spindle of the motor. The speed of the spindle can be changed by adjusting the frequency of the motor, and the speed of the spindle can also be adjusted steplessly.

3. Mechanical transmission

  There are two types of mechanical transmission, one is gear transmission, the other is belt transmission. Gear transmission is a motor driven big gear, the big gear meshes with the pinion of the spindle. The speed of the spindle varies with the transmission ratio of the gears. When the material input fluctuates, the speed of the spindle is constant and the mechanical efficiency is high. But the gear transmission structure will generate heat. The gear box needs lubrication and forced circulation cooling by oil pump, so the impact resistance of the equipment is weak.

  Belt drive is to drive large pulleys by motor, and then small pulleys on the spindle by belt. In theory, the speed ratio is equal to the inverse ratio of the diameter of large and small pulleys. The advantage of belt transmission is that the transmission system does not need cooling and lubrication, and has strong impact resistance. The disadvantage is that the spindle speed will fluctuate with the change of feed rate.

  For large mechanical transmission atomizer, because of the relationship between working environment, cooling system must be used to discharge heat from the atomizer due to mechanical transmission and drying process. At present, the main cooling methods are water cooling and air cooling. The structure of water cooling requires good airtightness and circulating water is pumped. Air cooling is forced cooling by ventilation through fans. One outlet enters the cold air, the other outlet discharges, the structure is relatively simple.

(3) Type of Dispersing Disk of Atomizer

  The high-speed rotation of the dispersing disk also produces the following three functions:

  The pressure of the dispersing disc on the air;

  (2) The attraction formed by the friction between the surface of the dispersion disk and the air;

  The momentum transmitted to the air during atomization.

  As mentioned earlier, the basic principle of centrifugal atomizer is to drive the spindle, which drives the dispersing disc fixed on it to rotate at high speed. The main types of dispersing discs are rotor dispersing disc, multi-tube dispersing disc, linear airfoil dispersing disc and curve airfoil dispersing disc.

1. Rotary Disperser

  The rotating cup dispersing plate, such as an inverted cup, has a smooth surface and sharp periphery. The feeding tube is set at the center, and the liquid first falls on the liquid distributor to make it flow downward uniformly along the cup body. When it reaches the cup mouth, the liquid is thrown out by centrifugal force and atomized. This structure is suitable for obtaining finer particles. It is mainly composed of feeding pipe, spindle, liquid distribution plate and rotary cup.

2. Multi-tube Dispersible Disk

  A number of nozzles are evenly arranged on the dispersing disc. These nozzles are mostly made of wear-resistant materials, which can obtain a larger linear velocity when the rotating speed of the dispersing disc is not high. The size of the pore and the length of the extension can control the particle size of the product. At present, it is widely used in food drying.

3. Linear Airfoil Dispersion Disk

  Linear airfoil dispersing disc distributes several liquid channels uniformly in the circumference of dispersing disc. The center line of channel mouth is a radial shape centered on dispersing disc. The channels are round, square and rectangular. The processing cost of the dispersing disc is low, and the material liquid is not easy to block the passage, but sometimes the passage can enter the air.

  In order to reduce the difficulty of processing, the dispersing discs are often processed separately and assembled again, and many straight lines are formed between the disks and the disks. This kind of structure is reasonable, and the sliding of material and liquid depends on the moving speed of liquid film on the disk. Closer to the center of the disk, the motion speed is not large, so the slip is not large. A channel is set at a certain distance from the center of the off-axis to prevent material-liquid sliding, increase the periphery of the wetting surface, and make the film move vertically along the channel. This structure can increase the throughput by changing the cross-section area of the channel without changing the diameter of the dispersion disk, and the fog spacing is basically the same. Some studies have shown that the smaller the cross-sectional area of the channel, the smaller the droplets produced, and vice versa, the larger the droplets produced.

4. Curved Wing Dispersion Disk

  The basic structure of curved airfoil dispersion disk is basically the same as that of straight airfoil, but the channel of curved airfoil is curved groove. In this dispersion disk, it can be divided into high curve, low curve and hyperbola. Compared with the straight-line airfoil, the processing cost is slightly higher, but the bulk density of the product is about 7%-10% higher than that of the former.

  When choosing a centrifugal spray dryer, the choice of nebulizer type is very closely related to the drying effect. The performance difference of the nebulizer has been introduced before, so as to provide reference for selection. Centrifugal spray dryer flow chart 2-31.

Three. Airflow spray dryer.

  Airstream spray drying is also one of the typical spray drying patterns. It is named after the airflow nebulizer (nozzle). The performance of the spray dryer and the shape of the main body of the dryer are mainly determined by the characteristics of the airflow nebulizer, which is mainly applied to the industries with fine grain size, such as medicine and other industries. The airflow spray dryer is smaller in diameter (compared with the other two dryers), especially for some materials with high viscosity and thixotropy. Gas-liquid two-phase contact is more flexible, and can be operated in parallel, mixed and countercurrent. However, due to the long spray distance of the airflow nebulizer, the height of the dryer should be lengthened appropriately to ensure that the droplets have enough residence time when the upper spray and lower parallel flow operation is adopted. Usually, the power consumption of air-flow atomizer is higher than that of the other two, usually 6-8 times of the other two. However, because it can atomize the material with high viscosity, which is inferior to other types of atomizers, it can also process the material with high solid content, reduce the energy consumption of drying, to a certain extent, make up for its shortcomings, so that the early model of Zui is still widely used in industrialization.

(1) Airflow atomizer

1. Working Principle of Airflow Atomizer

  The working principle of airflow nebulizer is to split liquid film by high-speed airflow. Compressed air or steam can be used in high-speed airflow, which is more economical than compressed air. The use of steam is limited by the material's heat-resistant temperature, so it can only be used when the material's heat-resistant temperature permits. When compressed air or steam is ejected from the atomizer at a high annular velocity (usually about 200 m/s, sometimes even at supersonic speed), the velocity of the feed liquid is very low, so there is a large relative velocity difference between the two, which results in friction and shear force between the gas and the liquid. The liquid is pulled into a thin filament in an instant, and then these filaments break quickly at a relatively fine point and form a tiny one. Droplets. The existence time of the filament depends on the relative velocity between gas and liquid and the physical properties of the material and liquid. The higher the relative speed is, the thinner the liquid filament is, the shorter the time and the higher the dispersity of the spray. The longer the filament exists, the greater the viscosity of the feed. For this reason, when the airflow spray drying process is used to treat some high viscosity liquid, the products obtained are usually powdery or flocculent, and the floc products are produced directly by liquid filament.

2. Basic structure of airflow atomizer

  Airflow atomizer also has many structural forms, but no matter how it changes, the basic structure is unchanged. That is to say, atomizer is mainly composed of intake pipe, feed pipe, adjusting parts and gas disperser. In the atomizer, the adjusting part mainly adjusts the relative position between the end face of the trachea and the end face of the material pipe to adjust the mixing state of the gas and liquid phases. Gas disperser is to distribute the gas into the trachea evenly so as to ensure the uniform ejection at the exit of the trachea. In addition, the gas can also adjust the flow direction through the gas disperser, which can make the gas rotate to enhance the dispersion effect and drying process.

  Air-flow atomizer can be divided into two types according to gas-liquid mixing mode: internal mixing type and external mixing type. Internal mixing is the mixture of liquid and gas in the atomizer. The atomization process not only has the friction of gas, but also produces the dispersion of impact in the atomizer, so it saves more energy than external mixing. However, because the material liquid begins to disperse in the atomizer, if the operating temperature is higher, the atomizer is easily blocked by the solid formed by the dry powder, so it should be used cautiously in the drying operation. The difference between the external mixing air atomizer is that the material liquid and the atomized gas contact after ejection to disperse the material liquid. This operation is relatively stable.

  The airflow atomizer can be divided into two-flow, three-flow and four-flow according to the number of passages through which gas and liquid enter the atomizer. The second-flow type is gas-liquid type, that is, the outer tube takes the gas and the inner tube takes the liquid. The three-flow atomizer is two-gas-one-liquid type. The inner and outer tubes take gas and the middle takes liquid. In theory, the particle size of the three-flow atomizer is about 15% smaller than that of the two-flow atomizer. In addition, there are four-flow type, four-flow type and three-flow type are basically the same, but in the Zui inner layer there are additional air pipes, which take high temperature hot air flow, the purpose is to introduce heat to the center of the fog flame, in order to strengthen the heat transfer process. But this structure is seldom used, and the two-stream external mixing atomizer is mostly used in industry.

  The characteristics of airflow spray drying are simple structure, convenient processing, large operation flexibility and easy adjustment. But when installing, attention should be paid to the concentricity of atomizer and dryer, otherwise there will be wall sticking and other phenomena. The flow chart of airflow spray dryer is shown in figure 2-32.

Four. Pressure spray dryer

  Pressure spray dryer (because of its high equipment and tower shape, also known as spray drying tower) is widely used in the production of Zui. The products of pressure spray dryer are particulates, and the average particle size can reach 150 ~ 200m. The product has good fluidity, wettability and other application performance, so it is welcomed by users.

  Pressure spray drying is mainly determined by the working principle of the pressure atomizer, so that the drying system has its own characteristics. Due to the particulate matter produced by pressure spray drying, the droplet drying time is longer for both droplets and products than for the other two types. In addition, the spray angle is also small, generally between 20 ~70, so the shape of the dryer is mainly high tower, so that the droplets can have enough residence time. The feeding liquid is atomized by atomizer under certain pressure, so there must be a high-pressure pump in the system. In addition, because the atomizer aperture is very small, in order to prevent impurities from blocking the atomizer aperture, it is necessary to filter the material before entering the high-pressure pump. Pressure spray drying is mostly used to obtain granular products. Therefore, the Zui end products produced by pressure spray drying have their unique application properties.

  Pressure atomizers (some monographs are called pressure nozzles) are important components of pressure spray dryer. Pressure atomizers are also called single fluid atomizers or mechanical nebulizers in some documents. The atomization mechanism is that the liquid enters the rotating chamber at high speed from the tangential passage of the atomizer under the pressure of the high-pressure pump, which makes the liquid rotate at high speed in the rotating chamber. According to the conservation law of moment of momentum, the rotating speed is inversely proportional to the radius of the rotating chamber, so the closer the rotating speed is to the axis, the smaller the static pressure is. When the rotating speed reaches a certain value, the pressure at the center of the atomizer equals the atmospheric pressure, and the liquid ejected forms a conical annular liquid film revolving around the air center. With the prolongation of the liquid film, the wave formed by the violent disturbance of air continues to develop, and the liquid film splits into thin lines. Affected by the radial partial velocity of turbulence and the relative velocity of ambient air, the liquid film breaks into filaments after zui. After breaking, the liquid filament is subjected to the action of surface tension. After zui, a mist group composed of numerous droplets is formed. After evaporation of water, a particulate product is formed.

  Over the years, many drying experts at home and abroad have done a lot of research work on the structure of pressure atomizer, and many structural forms have been developed. The common characteristic of pressure nebulizer is that liquid enters the nebulizer at high pressure and rotates at high speed. After obtaining enough centrifugal force, it sprays out from the nebulizer hole. Because of its many structures, in order to design and use conveniently, the pressure atomizer is divided into two categories: rotary pressure atomizer and centrifugal pressure atomizer. These two types of atomizers can make the liquid rotate inside the atomizer, but the structure of rotation is different.

Pressure spray drying also has its own disadvantages.

  Flow rate can not be adjusted in the production process. The flow rate mainly depends on the orifice diameter and operating pressure of the atomizer outlet, and the change of operating pressure will affect the particle size of the product. Therefore, if you want to change the flow rate, only change the orifice of the atomizer or adjust the operating pressure.

  2. Pressure spray drying is not suitable for dealing with fibrous or granular materials. These materials are easy to clog the nebulizer passages.

  (3) It is not suitable for treating high viscosity materials or suspensions with solid-liquid interface, which will cause serious uneven product content.

  4. Compared with the other two types, the volume evaporation intensity of pressure spray drying is lower.

  In related content, we have introduced raw products produced by spray drying, but the pressure spray drying granulation technology mentioned here has been applied to the following products.

  Chemical industry: catalyst, resin, synthetic laundry powder, grease, ammonium sulfate, dyes, dye intermediates, white carbon black, graphite, ammonium sulfate, pesticides, potassium fluoride, whitening agent CXT.

  Foods: amino acids, condiments, protein, starch, dairy products, coffee extract oil, full-fat milk powder, prion, cocoa milk powder, milk powder, egg white (yellow), oats, chicken juice, instant tea, spice meat, protein, soybean, peanut protein, corn syrup, corn starch, glucose, pectin, maltose, potassium sorbate, pumpkin powder. Fish meal, meat powder.

  Drugs: Chinese patent medicine, antibiotics, Chinese medicine granules, Chinese medicine extracts, glue, yeast, vitamins, antibiotics, amylase, lipase.

  Ceramics: Magnesium oxide, porcelain clay, various metal oxides, dolomite, kaolin, alumina, talc.

  Plastics: ABS emulsion, urea formaldehyde resin, rubber (urea) formaldehyde resin, polyethylene, polyvinyl chloride.
Contact us
 

Tel: 17317246351

Mailbox: sales@qfn17.com

URL: http://m.nnxt.net.cn

Address: Shanghai fengxian canal north road no. 1185

Scan QR codeClose
主站蜘蛛池模板: 色哟哟哟www精品视频观看软件 | 成人在线激情视频 | 大奶子在线观看 | 午夜激情毛片 | 久热这里只有精品视频6 | 一级激情视频 | 强制中出し~大桥未久在线播放 | 午夜久久乐| 99精品视频在线观看免费播放 | 最新黄色av网站 | 九九精品国产 | 亚洲香蕉成人av网站在线观看 | 香蕉中文网 | 久久免费影院 | 亚洲精品一区二区三区在线观看 | 欲妇荡岳丰满少妇岳91在线 | 人妻巨大乳一二三区 | 国产96在线 | 亚洲 | 国产乱码在线 | 国产午夜伦理 | 变态孕妇孕交av免费看 | av簧片| 别cao我了~好爽~轻一点视频 | 毛片毛片毛片毛片毛片 | 丁香六月av | 国内精品久久久久影院一蜜桃 | 日韩欧美国产三级 | 中文字幕乱码在线 | 午夜影吧 | 一区二区三区在线免费观看视频 | 国产欧美高清在线观看 | 亚洲熟妇无码一区二区三区导航 | 美女脱了内裤张开腿让男人桶网站 | 久久精品7 | 狠狠色噜噜综合社区 | 涩涩屋导航福利av导航 | 久久一级黄色片 | 久久精品国产色蜜蜜麻豆 | 欧美日韩你懂的 | 屁屁影院,国产第一页 | 国产一区二三区 | 久久久久久黄色 | 久久国产尿小便嘘嘘97 | 亚洲国产成人精品无码一区二区 | 亚洲欧洲日本一区二区三区 | 亚洲黄网在线观看 | 欧美精品免费在线观看 | 亚洲性网站 | 人妻无码中文字幕 | 中文字幕无码免费久久9一区9 | 亚洲成人一区二区三区 | 三级毛片视频 | 人妖ts福利视频一二三区 | 琪琪午夜伦埋影院77 | 国产精品18久久久久vr使用方法 | 日美韩一区二区三区 | 国产做a爱一及毛片久久 | 色婷婷综合中文久久一本 | 国产免费无码一区二区 | 精品亚洲a∨无码一区二区三区 | 在线观看成人无码中文av天堂 | 成人免费影片在线观看 | 国产精品一级二级 | 色a在线观看 | 国产91麻豆视频 | 久久午夜无码鲁丝片秋霞 | 鲁一鲁在线视频 | 污污网站免费在线观看 | 狠狠色狠狠色综合日日92 | 精品少妇爆乳无码av无码专区 | 亚洲欧洲一区 | 久久精品aaaaaa羞羞羞 | 国产亚洲精品精品精品 | 在线精品亚洲一区二区 | 国产精品人人人人 | 欧美精品一区在线观看 | 69视频网址| 娇小性色伦xxxxx中国av | 日本熟女毛茸茸 | 国产日韩欧美中文字幕 | 2021中文字幕在线观看 | 国产欧美日韩三区 | 好了av四色综合网站 | 免费精品一区二区 | 国内自拍小视频 | 国产视频九色蝌蚪 | 中日韩精品视频在线观看 | 青草青草久热精品视频在线观看 | 狠狠色狠狠色综合 | 欧美成人午夜影院 | 三级无遮挡污在线观看 | 深夜小视频在线观看 | 狠狠色婷婷 | 少妇人妻偷人精品免费视频 | 精品av国产一区二区三区 | 99福利| 久久av无码精品人妻系列果冻传媒 | 成人羞羞国产免费图片 | 伊甸园精品99久久久久久 | 亚洲免费色 | 日韩精品无码一区二区三区 | 久久av免费 | 97在线视频网站 | 日本两性视频 | 美女131爽爽爽 | 欧美精品乱码99久久蜜桃 | 性xxxxx大片做受免费视 | 18禁超污无遮挡无码免费网站国产 | 男人的天堂在线播放 | 国产一三四2021不卡 | 久久久久亚洲ai毛片换脸星大全 | 久久视频精品在线 | 成人 动漫 | 国产福利免费视频 | 福利小视频 | 性久久久久久久久久 | 国产精品久久久一区二区三区网站 | 三级av毛片 | 日本夫妻性生活视频 | 天天躁日日躁mmmmxxxx | 欧美特黄视频 | 日本青青草视频 | 波多野结衣视频在线 | 国产精品久久久久久久久久久久久久久 | 欧美一本 | 日本久久久久久科技有限公司 | 手机国产乱子伦精品视频 | 99久久精品费精品国产风间由美 | 中文字幕亚洲欧美日韩在线不卡 | 国产线播放免费人成视频播放 | 激情综合色综合久久综合 | 亚洲国产欧美另类 | www超碰在线观看 | 先锋影音人妻啪啪va资源网站 | 国产盗摄夫妻原创视频在线观看 | x88av乱视频| 老熟女一区二区免费 | 国产女性无套免费看网站 | 图片区小说区另类春色 | 五月丁香啪啪 | 国产伦精品一区二区三区无广告 | 国产日韩在线一区 | 五姑娘影院在线观看免费 | 国产免费久久精品 | 乱lun合集小可的奶水 | 亚洲成人自拍 | 136av福利视频导航 | 亚洲一级理论片 | 99精品视频在线观看 | 99在线免费视频 | 国产精品日韩欧美一区二区 | 国产成人av一区二区三区在线观看 | 成人综合色站 | 国产精品福利一区 | 亚洲一区二区视频在线观看 | 国产在线资源站 | 久久久久国产视频 | 国产激情自拍视频 | 成人啪啪178| 亚洲狠狠| 男人天堂新地址 | 久久免费视频网 | 国产在线播放一区二区 | 国产成人久久精品激情 | 日本三级欧美三级人妇视频黑白配 | 黑人巨茎大战俄罗斯美女 | 中文字幕97 | 日韩欧美一区二区三区久久婷婷 | 黄a在线观看 | 久久中文骚妇内射 | 亚洲精品一区二区三区蜜桃 | 日本a天堂 | 国产精品久久欧美久久一区 | 中国毛片视频 | 欧美亚色 | 中文字幕在线免费观看 | 国产精品久久久久久久久婷婷 | 性色av无码不卡中文字幕 | 人人妻人人添人人爽欧美一区 | 亚洲一区二区日韩 | 久久精品久久综合 | 91原视频 | 一级a性色生活片久久毛片明星 | 国产激情综合在线观看 | 成人性生交大片免费看vrv66 | 中文字幕日韩高清 | 一级黄色免费 | yw视频在线观看 | 免费看欧美一级特黄a大片 免费看欧美中韩毛片影院 免费看片91 | 国产欧精精久久久久久久 | 精品国产乱码一区二区三区99 | 免费高清a级南片在线观看 免费高清成人 | 亚洲综合在线播放 | 國产一二三内射在线看片 | 国产91精品看黄网站在线观看动漫 | 老女人伦理中文字幕 | 性一交一乱一伧老太 | 国产成人精品免费视频大全 | 欧美一区二区三区粗大 | 秋霞影院午夜丰满少妇在线视频 | 亚洲精品中文字幕乱码 | 成年人一级片 | 国产精品片aa在线观看 | 免费人成年激情视频在线观看 | 精品久久人妻av中文字幕 | 激情丁香 | 色婷婷综合久久久中文字幕 | 国产日韩欧美精品一区二区三区 | 久久婷婷国产91天堂综合精品 | 国产超碰人人爽人人做人人爱 | 欧美青草视频 | 亚洲最大成人网站 | 国产精品久久久久久久久免小说 | 性高湖久久久久久久久 | 小伙和少妇干柴烈火 | 91精品视频免费在线观看 | 亚洲第一aaaaa片 | 亚洲黄色小视频在线观看 | 日韩精品五区 | 国产动作大片中文字幕 | 亚洲国产最新 | 国产福利在线视频观看 | 青草99 | 欧美一区二区三区免费 | 四虎影视在线影院在线观看免费视频 | 精彩视频一区二区三区 | 免费人妻无码不卡中文字幕18禁 | 免费看国产黄色片 | 女人喷潮完整视频 | a天堂视频 | 精品一区二区三区不卡 | 国产精品黑色高跟鞋丝袜 | 麻豆chinese极品少妇 | 国产成人亚洲欧洲在线 | 天天干中文字幕 | 2级黄色片| 高潮毛片无遮挡 | 成人一级片在线观看 | 精品少妇人妻av一区二区三区 | 国语对白做受69按摩 | 国产乱码精品一区二区三区亚洲人 | 91精品国产色综合久久不卡98 | 亚洲精品视频在线免费播放 | 男女无遮挡羞羞视频 | 国产精品久久777777换脸 | 久久午夜精品 | 91久久一区| 国产在线午夜卡精品影院 | 国产人妻久久精品二区三区老狼 | 国产精品96久久久久久 | 高清乱码毛片 | 一级黄色性感片 | 日韩av免费播放 | 国产黑丝在线 | 国产成人亚洲综合色婷婷 | 国产伦精品一区二区三区免费迷 | 伊人久久大香线蕉av一区 | 精品久久成人 | 夜夜高潮夜夜爽精品av免费的 | 黄色免费高清 | 国产精品无套内射迪丽热巴 | 一级片免费视频 | 在线一区二区三区 | 96成人爽a毛片一区二区 | 四虎视频国产精品免费入口 | 欧洲成人免费视频 | 俄罗斯av在线 | 亚洲欧美综合一区 | 99热九九这里只有精品10 | 黄色片在线免费观看视频 | 中文区中文字幕免费看 | 久久免费少妇高潮99精品 | 日韩av高清在线看片 | 中文字幕无码乱码人妻系列蜜桃 | 国模小丫大尺度啪啪人体 | 国产精品视频麻豆 | 蜜桃av噜噜一区二区三区策驰 | 最新国产三级 | 欧美另类69 | 欧美爱爱网站 | 丝袜高跟呻吟 | av在线亚洲男人的天堂 | 亚洲精品国产精品乱码不99 | 久久美女性网 | 一区二区三区无码高清视频 | 久久亚洲精品成人无码网站 | 免费黄网站在线观看 | 丰满人妻一区二区三区视频53 | 亚洲一片 | 久久久99国产精品免费 | 亚洲精品92内射 | yw.139尤物在线精品视频 | 另类小说亚洲色图 | 日韩中文字幕在线一区二区三区 | 亚洲中又文字幕精品av | 欧美日本色 | 亚洲欧美综合精品成人导航 | 老司机午夜免费精品视频 | 狠狠干中文字幕 | 亚洲综合视频网 | 欲求不满的岳中文字幕 | 少妇人妻互换不带套 | 日批网站在线观看 | 日韩综合网 | 国产三级精品片 | 黑人巨大99vs小早川怜子 | 国产二区一区 | wwww亚洲| 天堂网在线播放 | 超鹏在线视频 | 国产成人无码一二三区视频 | 在线能看的av| 91麻豆精产国品一二区灌醉 | 欧美日韩伊人 | 日韩女女同性aa女同 | 日韩欧美中文在线 | 九一亚洲| 日韩精品在线观看一区二区 | 色综合久久精品亚洲国产 | 性色在线观看 | 国产欠欠欠18一区二区 | 狠狠狠色丁香婷婷综合久久88 | 女人两腿打开让男人添野外视频 | 高清国产亚洲精品自在久久 | 国产做受蜜臀 | 麻豆aⅴ精品无码一区二区 午夜福制92视频 | 亚洲第一欧美 | 无码精品人妻一区二区三区免费看 | 一道本久久 | 亚洲网视频| 无码精品人妻一区二区三区av | 国产精品亚洲一区二区三区在线 | www.youjizz.com在线 | 色婷五月天 | 亚洲激情久久久 | 久久精品成人一区二区三区蜜臀 | 欧美中字 | 日韩毛片一区 | 久久婷婷一区二区 | 伊人网址 | 日本不卡在线视频 | 2021国产精品| 偷拍富婆做爰太猛视频 | 国产精品久久久久aaaa | 国产成人无码a区在线视频无码dvd | 国产做a爰片久久毛片a我的朋友 | 国产三级久久久精品麻豆三级 | 一级做a爰片久久毛片一 | 日韩国产在线观看 | 国产一级片在线 | 国产精品高潮呻吟久久av郑州 | 免费视频爱爱太爽了激情 | 最新中文字幕免费 | 成人国产精品色哟哟 | 亚洲欧美人色综合婷婷久久 | 黄色成人av在线 | 国产淫语对白 | 日韩欧群交p片内射中文 | 天天天操操操 | 懂色粉嫩绯色av | 日本精品一二三 | 国产情侣久久 | 97无码人妻福利免费公开在线视频 | 97精品国产97久久久久久免费 | 国产精品久久久一区二区三区 | 男操女视频网站 | 人妻精品久久久久中文字幕 | 久久影视网 | 狠狠欧美| 国产裸体无遮挡免费精品视频 | 97视频免费看 | 精品国产福利在线 | 国产内谢 | 韩国视频一区 | 对白刺激国产子与伦 | 女神思瑞女神久久一区二区 | 在线欧美色 | 色翁荡息又大又硬又粗又爽电影 | 亚洲中文字幕精品久久 | 亚洲熟妇无码一区二区三区导航 | 女国产精品视频一区二区三区 | 肉体暴力强伦轩在线播放 | 国产乱人乱精一区二视频 | 久久这里只有精品23 | 嫩草福利视频精品一区二区三区 | 成人综合影院 | 巨大乳女人做爰视频在线看 | 精品一区二区三区四区视频 | 丝袜tk一丨视频vk | 新狼窝色av性久久久久久 | 欧美自拍第一页 | 秋霞一级全黄大片 | 欧美综合天天夜夜久久 | 2023天天操| 国产成人精品一区二区 | 日韩在线www | 妺妺窝人体色www聚色窝仙踪 | 999久久久国产精品消防器材 | 清清草在线视频 | 在线成人av网站 | 夜间福利在线 | 天天操天天碰 | 国精品无码一区二区三区左线 | 欧美日韩视频 | 国产午夜夜伦鲁鲁片 | 国产伦精品一区二区三区网站 | 九九九九久久久久 | 日韩最新视频 | 精品熟女少妇av免费观看 | 成av在线 | 蜜臀99久久精品久久久久小说 | 三级网站在线 | 91av导航| 福利逼站 | 无码专区aaaaaa免费视频 | aaa成人| 久久亚洲成人 | 欧美精品久久久久久久久大尺度 | 夜夜躁狠狠躁日日躁视频黑人 | 国产一级淫片a免费播放 | 日韩一区二区三区无码影院 | 中文字幕第1页第69 中文字幕第22页 | ass丰满少妇bsspicss | 黄色大片毛片 | 欧美破处大片 | 精品人妻无码区二区三区 | 国产夫妻性生活 | 勾搭情趣店女老板av | 999热精品| 欧美a∨视频| 成人免费视频观看 | 岛国大片在线免费观看 | 狠狠噜天天噜日日噜 | 国产女人18毛片水真多18 | 国产乱码精品一区二区三区不卡 | 亚洲综合色小说 | 男女全黄一级高潮 | 免费网站日本a级淫片免费看 | 性少妇无码播放 | 国产av一区二区三区无码野战 | 污污小说在线观看 | 国产精品久久久久久久久晋中 | 国产一区二区三区四区五区密私 | 在线观看视频毛片 | 青草国产精品久久久久久 | 日韩在线你懂的 | 7m视频国产精品 | 欧美大片免费观看网址 | 亚洲久久视频 | 国产精品久久久久久妇女6080 | 日本国产精品 | 婷婷丁香六月天 | av在线播放中文字幕 | 羞羞色院91蜜桃 | 亚洲专区欧美 | 尤物精品视频 | 国产96在线 | 亚洲 | 国产三级视频网站 | 粉嫩av一区二区在线播放免费 | 少妇欧美激情一区二区三区 | 国自产拍偷拍精品啪啪一区二区 | 一本一道波多野结衣中文av字幕 | 奇米影视7777久久精品 | 最新天堂av | 久久无码人妻丰满熟妇区毛片 | a级特黄一级一大片多人 | 亚洲成人av网址 | 日本一区二区免费看 | 国内精品视频一区二区三区 | 中文字幕精品一二三四五六七八 | 少妇一级淫片免费播放 | 国产视频网站在线观看 | 四川丰满少妇被弄到高潮 | 疯狂撞击丝袜人妻 | 55夜色66夜色国产精品视频 | 日产成品片a直接观看入 | 一级片免费视频 | 日日噜噜噜夜夜爽爽狠狠视频 | 亚洲伊人精品酒店 | 最新91在线 | 国产一区二区成人 | 欧美性做爰视频 | 婷婷色一区二区三区 | 亚洲第一精品在线观看 | 羞羞午夜福利免费视频 | 欧美激情一区二区三区 | a级老太婆毛片老太婆毛片 a级毛片,黄,免费观看 m | 精品国产二区三区 | 色噜噜在线观看 | 免费一级片在线观看 | 国产成人无码视频一区二区三区 | 爱情岛av亚洲论坛自拍品质 | 亚洲天堂网在线观看 | julia在线播放88mav | k8yy毛片| 99久久99久久久精品齐齐 | 国产精品乡下勾搭老头1 | 久热精品视频在线播放 | 国产精品一级二级三级 | 日韩欧美在线视频播放 | 国产精品综合久久久 | 人妻三级日本三级日本三级极 | 舌吻激情大尺度做爰视频 | 亚洲伊人久久大香线蕉综合图片 | 91调教打屁股xxxx网站 | 性欧美videossex精品 | 成年人在线观看视频网站 | 国产丰满大乳奶水 | 丝袜在线视频 | 久草综合在线 | 国产高潮久久 | 日本激情网址 | 欧美美女视频 | 在线精品国产一区二区三区 | 成年人看的羞羞网站 | 欧洲做受高潮免费看 | 亚洲精品乱码久久久久红杏 | 欧美成片vs欧美 | 强行糟蹋人妻hd中文字幕 | av亚洲精华国产精华精 | 国产成人一区在线观看 | 免费av一级片 | 日本青青草视频 | 在线看毛片的网站 | 美女在线一区 | 欧美另类在线观看 | 天堂网av在线 | 久久美| www.亚洲色图.com | 男女插插视频 | av毛片基地 | 亚洲在av极品无码天堂手机版 | 精品欧美一区二区久久久 | a级黄色片视频 | 国产剧情演绎av | 操bbbbb| 玩弄japan白嫩少妇hd小说 | 五月天中文字幕mv在线 | 男人的天堂无码动漫av | 性插动态视频 | 大肉大捧一进一出好爽视色大师 | 亚洲男人的天堂网站 | 精品人妻无码区在线视频 | 91在线看 | 77777亚洲午夜久久多喷 | 国产视频在线一区 | 天天精品 | 涩涩屋www视频在线观看高清 | 国产亚洲精品久久久闺蜜 | 免费观看视频一区二区 | 欧美视频在线观看视频 | 快好爽射给我视频 | 日本无码人妻精品一区二区蜜桃 | 国产精品久久久久久久久久精爆 | 中文字幕日韩一区二区三区不卡 | 久久久这里有精品 | 97caop| 午夜精品久久久久久久久久久久久蜜桃 | 337p日本欧洲亚洲大胆色噜噜 | a级高清免费毛片av在线 | a一级网站 | 97久久超碰精品视觉盛宴 | 亚洲精品视频91 | 91在线视频免费看 | 国产精品99久久精品爆乳 | 久久疯狂做爰流白浆xxxⅹ | 国产免费福利 | 国产国产国产 | 天天射av| 91在线精品一区二区 | 狠狠色综合7777久夜色撩人ⅰ | 日韩av免费片 | 国产96在线| 髙清国产性猛交xxxand | 国产精品久久久久久久久免费丝袜 | 99久久免费精品国产免费高清 | 亚洲美女激情视频 | 新版天堂资源中文8在线 | 91av在线播放视频 | 精品无码国产污污污免费网站 | а√中文在线资源库 | 国产无套粉嫩白浆内谢在线 | 国产精品毛片av在线看 | av天堂永久资源网 | 91人人爽久久涩噜噜噜 | 久久久久久久久免费看无码 | 欧美极品jizzhd欧美仙踪林 | 亚洲国产日韩a在线播放性色 | 国产爽爽久久影院潘金莲 | 18禁无遮挡羞羞污污污污网站 | 男女啪啪做爰高潮免费看 | 亚洲国产欧美一区二区潘金莲 | 17c在线视频在线观看 | 中文不卡av| 精品人妻无码一区二区三区性 | 中文字幕一区二区三 | 精品久久久久久久中文字幕 | 日本在线一级片 | 亚洲天堂网在线播放 | 无码人妻精品一区二区蜜桃网站 | а√天堂资源8在线官网在线 | 国产乱理伦片在线观看 | 国产一线二线三线在线观看 | 日本一本在线视频 | 国内精品伊人久久久久7777 | 在线视频亚洲色图 | 欧美精品一级片 | 国产成人精品综合久久久久 | 久久亚洲男人天堂 | 国产a∨精品一区二区三区不卡 | 在线一区二区三区在线一区 | 色接久久| 无人区码一码二码w358cc | 又爽又黄无遮挡高潮视频网站 | 996热re视频精品视频这里 |